Concrete Forms Get Stronger, Lighter, and More Sustainable With Generative Design

Sustainable ConcreteMajor breakthroughs in building methods don’t come around very often. Some world-changing examples include the Great Pyramids of Giza, France’s Pont Du Gard aqueduct, Le Corbusier’s floating-slab design, and the Hoover Dam. Through centuries of design innovation, concrete has been a stalwart material for human-made structures. But old formulations and methods are evolving, as new technologies such as 3D printing and artificial intelligence (AI) promise to make concrete lighter, more durable, and—perhaps most important—more sustainable.

Structural engineer Marcos Silveira and his team are spearheading a project called Hone Structures, which they hope will help advance sustainable concrete construction techniques. Hone Structures is applying generative design to reinforced concrete structures—starting with proof-of-concept concrete deep beams—to explore material savings and other potential benefits of the process.

Midway through his PhD at the University of São Paulo and the University of Windsor, Canada (under the supervision of Dr. Sreekanta Das at the University of Windsor and Dr. Luís Bitencourt at the University of São Paulo), Silveira and his teammate Gabriela Vivan attended the Generative Design for AEC Intensive Residency at the Autodesk Technology Centre in Toronto to develop concepts, then worked with robotics experts in Boston to build reinforced concrete and learn about 3D printing. Silveira says the project—a “living, breathing application” of his PhD thesis—“aims to reshape the design and construction process for reinforced concrete structures” using generative design, AI, and robotics.

Click here to read the rest of this story.